
KSME Journal, Vol. 9, No.4, pp. 397 -409, 1995

Chaos Maximizing Optimal Control
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A chaos maximizing optimal control problem is formulated and applied to Duffing's equation

to maximize the largest Lyapunov exponent. The resulting bang-bang optimal controller yields
a positive value of the largest Lyapunov exponent, indicating chaotic behavior. In fact, the

largest Lyapunov exponent is approximately twice as large as that achieved with simple
sinusoidal forcing at the same amplitude bounds. However, the resulting phase portrait of the

optimal trajectory is a limit cycle and is not chaotic at all. This paradoxical result contradicts
the basic theory that a bounded trajectory with at least one positive Lyapunov exponent must

bt: chaotic. Details concerning the development of a chaos measurement that is viable for current
optimal control theory, a method of continuous normalization, the paradoxical chaotic limit
cycle, resolution of the paradox, and closed-loop optimal jump condition in an augmented space

are presented. In particular, for systems of differential equations with only piecewise differentia­
ble right-hand sides due to a switching control, a jump discontinuity condition must be imposed

on the state perturbations in order to compute correct Lyapunov exponents.

Key Words: Chaos, Maximum Chaos, Optimal Control, Strange Attractor, Limit Cycle
Continuous Normalization, Perturbation Vector, Jump Condition.
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1. Introduction

Thc~ report of "strange" behavior in Lorenz's

weather prediction model (Lorenz, 1963) and the
existence of modern computing systems triggered

the study of chaos by many scientists and mathe­
maticians. Recently, researchers have reported

that "strange" behaviors are found not only in the
dynamics field, including discrete-time systems
such as a prey-predator model, but also in systems
involving feedback controls. Many cases have
been reported in which chaos exists in either

practical control systems or numerical computer
models (Brockett, 1982; Ushio, 1983; Rubio,
1985.; Cook, 1985; Cook, 1986). Most of the

systems considered as examples were simple sys­
tems of dimension less than two and the controls
were also elementary, such as linear constant-gain
feedback or switching functions with hysteresis.
Furthermore, none of the reports mentioned
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chaos found in an optimal control system or even
the possibility of the existence of chaos in a
nonlinear optimal control system.

In this paper, a study of the chaotic responses
of nonlinear dynamical systems subject to optimal

control is presented. Three difficulties has been
considered. The first is the current lack of a chaos
measurement suitable for the optimal control

theory. Several measurements have been devel­
oped including Lyapunov exponents and various
measures of fractal dimension (Capacity dimen­
sion, Hausdorff dimension, Information dimen­

sion, Pointwise dimension, and Lyapunov dimen­
sion). However the chaos measure should be
expressed in integral form, with corresponding

differential equation, so that standard optimal
control theory (Pontryagin, 1964) can be used. We
will employ the largest Lyapunov exponent for a
chaos measurement since the formula for the
largest Lyapunov exponent can be converted to
integral form. The second is the exponential
growth of both state perturbations and optimal
control adjoint variables, leading to over flow
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To discuss various topics related to a chaotic

system, consider a control system of the form

2. Lyapunov Exponents As
a Performance Index

7j =D(t)1}

D(t)=( af(x, u) + af(x, u) au) (5)
ax ax ax

along x(t) using u( • ). Replacing 8(0) with z

condition that should be applied when the
Lyapunov exponent is used as a performance

index for chaos extremizing control problems.
Note that one must know the optimal cost return
function for the optimal problem to compute

correct initial values of the perturbation vector.

(I)x=f(x, u)

assuming that f(x, u) is continuous and differ­
entiable for all x and u. The Lyapunov exponents

of the continuous-time dynamical system (I) are
defined by letting o(t) denote the distance
between two trajectories for a continuous-time

dynamical system. If there exists a number (5

which satisfies

o(t) -. 0(0)e 6t as t -. 00 (2)

for arbitrary small 0(0), then (5 is called a
Lyapunov exponent and is defined by

(5= lti~CI(1r:o+ln(~ibD) (3)

Let x(t){;d<jJ(t, x(O» be a solution generated
by (I) with admissible control u. To compute the
Lyapunov exponents, consider an n-dimensional
ellipsoid whose center lies on the reference trajec­

tory x and semi-axes are determined by n­

orthogonal perturbation vectors. Let z( t) (;d <jJ( t,

z(O)) be the solution of (I) generated by the same
function u( • ) with the initial value z(O) being
arbitrarily close to x(O).

Applying Taylor's theorem, assuming the right

hand side of ( I) is continuous and continuously
differentiable along x( t), we have

z(t)=x(t) +E1}(t)+ O(E), (4)

where O(E)!c-'O and 1}(t)EEn satisfies the
linearized state perturbation equations

error In the digital computer during numerical

simulation. The third difficulty, which is related
to the overflow problem, is that the current reor­

thonormalization procedure for the calculation of
Lyapunov exponents induces discontinuous jump
changes in the variables of the state perturbation

differential equations (Wolf, 1985). One funda­

mental technique is to replace periodic discontin­
uous renormalization with differential equations

that correspond to continuous normalization at

each time instant.
In Section 2 and 3, A Lyapunov exponent as a

performance index for a chaos extremizing con­

trol problem is considered. To be a proper perfor­
mance index, the object function must be in an

integral form. A technique that converts the first
Lyapunov exponent into a differential equation
and further into an integral form is introduced. In
Section 4, for the Duffing's Oscillator, it has been
shown that maximizing the first Lyapunov expo­
nent is equivalent to maximizing the Lyapunov

dimension conjectured by Kaplan and Yorke.
This result enables us to maximize chaos by

indirectly manipulating a Lyapunov exponent for
this particular system.

In the following sections, a numerical simula­

tion has been conducted and a paradoxical result
called "Chaotic Limit Cycle" is observed. The

simulation result is paradoxical since the state
space trajectory is a limit cycle and one of the
Lyapunov exponents is a positive number. This

result must be wrong since the basic understand­
ing that a bound trajectory with at least one
positive exponent must be chaotic. To resolve this
paradox, a state perturbation vector jump condi­

tion has been developed. However, the jump
condition developed in the augmented space
requires prior knowledge of the optimal cost

return function.
Finally, in Section 10, the necessary jump con­

dition has been applied to a system that we know
the cost return function. It is also shown graphi­
cally that the perturbation vector crossing a dis­
continuity manifold exhibits correct result, in the
sense of Lyapunov exponent computation, with
the jump condition implemented.

In particular, we propose a necessary jump
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(O)-x(O) and 8(t) with z(t)-xW in Eq. (3), we

have

and x( to), TJ( to), to and tf are given.

0= ; [~ln~ot]
I TJTi; I J!ll

=-Tf7J1f-71n II TJoll
I TJTi; 6 (7)

= -nf7j1f -- t
provided that t *0. Finally we have an optimal

control problem, together with (I), (5) and (7), as

follows:

maxi'f odt
U 10

6=1,i~~(~) (6)

as E: -.0. Note that Eq. (6) handles the limiting

process for 8(0) ---> °in (3) automatically.
By rhe definition of the Lyapunov exponents,

semi-axes grow exponentially with time and

diverge in magnitude beyond the capacity that a

finite-word-Iength computer can handle. This is

not a mathematical problem but a computational

proble:m (Wolf, 1985). Another peculiarity (both

mathematical and computational) is that each

perturbation vector has a tendency, over time, to

align itself along the direction corresponding to

the largest Lyapunov exponent. The first problem

may be circumvented by renormalization of the

perturbation vectors when their magnitudes

become big. The second problem can be solved by

repeated use of reorthogonalization on the pertur­

bation vectors. A method of Gramm-Schmidt

reorthonormalization is presented in the reference

(Wolf, 1985).

An optimal control problem maximizing the

chaos of the system by manipulating the first

Lyapunov exponent, described by the admissible

rules of the form (I), can be formulated using the

quantity 6 defined in (6) as an performance

index. To convert Eq. (6) to integral form, we

diffen:ntiate 6 in (6) with respect to t:

3. Continuous Normalization

(9)

(10)

._(i; TJTJTi;)
~ - r fi1f-H3

=l~(1- 11:11
1

z}
Substituting i; from (5) into (9), WtO: obtain

and corresponding 0 in (8)

o=-~~TDW~---(j (II)
r 2t" t

provided that t *0. Advantages of this approach

are the magnitude of the perturbation vector ~

stays constant (we have not yet proved the stabil­

ity of Eq. (II), but it turned out to be stable

numerically) and there is no discontinuity in the

state perturbation vector.

It is still undesirable to have t in the denomina­

tor of Eq. (II) which prevents choosing to=O.

Moving the term 6/ t in (II) to the left and

multiplying both sides by t, we have

t( 0 +-2:_)=1(6 ) = eD\t~ (12)
t dt r-

With an arbitrary choice of to and tf*O, we

As discussed earlier, state perturbations grow

exponentially. To remedy this problem, one may

renormalize state perturbation vecrors to unit

vectors periodically (Wolf, 1985). However, this

renormalization procedure for the computation of

Lyapunov exponents causes discontinuities in the

variables of the state perturbations. In this paper,

we employ a method of "continuous normaliza­

tion" which replaces periodic discontinuous

renormalization with differential equations that

correspond to continuous normalization at each

time instance. This technique has been developed

by Lee, Grantham, and Fisher (1994) and the

relevant part of their work to this research is

repeated here.

Let c;~ r( TJ/IiTJIj)be a normalized perturbation

vector and a constant r be the norm of ~.

Differentiating c; with respect to time, we get

(8)

subject to

x= fIx, u)
i; =DWTJ

IT'
o=t~TJr-~'
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finally have

6Uf)=~ftf eD~t)~ dt+ 6Uo) to. (13)
t to r tf

Note that we may choose to=O or 6Uo)=0 to
nullify the right most term of (13). However, it

will vanish as tf --> 00 so that we can ignore it for
Lyapunov exponent computation purposes.

Using (13) as a performance index, the optimal
control problem for the maximum Lyapunov
exponent is formulated as follows:

4. Duffing's Oscillator

The equation chosen for the study is

or, in a state space form,

Xl=XZ

XZ=+(XI - xn - O'Xz+ u(t)

(19)

(20)

maxftf

fodt
U to

where xUo), ~Uo), to and tf are given, U is a
control constraint set, and r=II~II. Eq. (14) con­
stitute a set of 2n + I differential equations whose
solutions define trajectories in E zn +J• In order to
utilize the maximum principle (Pontryagin, 1964),

we require the H function given by

subject to

Xo= fo~ ~tD(P~
r

x= f(x, u)

~=(1- ~!ZT )D(t)~

uEU, toststf (14)

where 0' is a fixed parameter and u acts as a
control variable. Given the system (19) or (20),

one may use the optimal control problem setup in
(14) to seek maximum chaos.

We can maximize the dimension of a chaotic
attractor for the example system via indirect

manipulation of Lyapunov exponents, especially
the first one, based on the conjecture of Kaplan
and Yorke (1979). Since the order of the system is

three and it is required that, in order to be chaotic

for third-order dissipative systems, the first, sec­
ond, and third Lyapunov exponents are positive,
zero and negative, respectively (Haken, 1983). So

the Lyapunov dimension of Kaplan and Yorke is

(21)

and differential equations for corresponding ad­

joint vectors

H =?tof+ ),If +),J~ (15) and the sum of the Lyapunov exponents is equal
to the divergence which is a negative constant

number. In a mathematical form, the divergence is

where

The optimal control u* is chosen to satisfy fol­

lowing conditions given by

u~~H()'(t), x*(t), e(t), u)

=H(),(t), x*(t), e(t), u*(t),

H(),(t), x*U), e(t), u*(t)=O

\i tE[to, tf ] (18)

M"

lM ~~
l- I

I

,,~ W
1../ 1,1

.2

.1

e
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~
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1:1
=0
C..... -.2
~
1:1

=c. -.3..
S

-.4
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aJ
Fig. 1 Lyapunov exponents spectrum for Dulling's

equation with simple sinusoidal forcing

(16)

( 17)
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(23)

given by

V.(=(51+62+63=-(J. (22)

From (21) and (22), we see that the Lyapunov
dimension is a monotonic function of 61 as fol­

lows:

2 61
dL = + 161 + 61'

Thus, we maximize the first Lyapunov exponent

indirectly instead of manipulating the dimension
of an attractor to maximize chaos of the system.

In the study we will use (J=0.168 in Eq. (20).

The Lyapunov exponents spectrum of the system
with a simple sinusoidal excitation having the
samt: magnitude as the optimal control is plotted

in Fig. 1.

equation for the renormalized adjoint vector re­

presented by

(25)

where

We note that in (24), .110 corresponding to Ao is no
longer constant. Incorporating (13) as a perfor­

mance index for maximum chaos, renormalized
state perturbation in (14), renormalized adjoint
variable vector in (25), and function in (24), we

obtain the final form of the optimization problem

as follows:

Consider the Duffing system in (20), a system
of differential equations for the normalized state

perturbations

subject to

X=F(X(t), u(t)

uEU, to~t~tf (27)

and (25) where X(to), to, and tf are given and /0
is defined in (14). The optimal control u* IS

chosen by the following conditions, given by

s. Optimal Control Problem
Incorporating Continuous Renormal­
ization and Normalized Adjoint Vector

The magnitude of some of the adjoint vector
components grows exponentially as does the

magnitude of state perturbation vectors corre­
sponding to positive Lyapunov exponents. To
remt:dy this problem, we again introduce normal­

ized adjoint variables and develop governing

differential equations. To do so, let us introduce
the renormalized adjoint variable vector and a

new H function, /H, that consists of the velocity
vector and the renormalized adjoint vector as
follows:

A ). T

A~l/N and Di~l/NF=ATF (24)

where l/ = IIAII. Differentiating A and substituting
Eqs. (16) and (17) into it, we have a differential

maxl"fodt
u '0

sup
UEU/H(A(t), X*(t), u)

=/HA(t), X*(t), u*(t»
/H(A(t), X*(t), u*(t))=O

\j tE[to, tf]'

6. Numerical Study

(26)

(28)

(29)

~=(I - E;2
T

)D(t)E

6- ~f~2/r2-+(1-3xn~f~2/r2+ (J~I~U r Z

= { - ~l~U r2++( 1-3xf)( 1- til r2)~1 - (J6( 1-xU r z)'

(30)

and a performance functional

/o=~eD(t)E
r

= :2[+(I-3xn66+~16-(J~i] (31)

with a scalar control input u(t), subject to the
constraints

(32)

and parameter values 0=0.168 and Umax=0.25.
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and

On a singular arc, the control is not determined

by the necessary condition

0.7719380248

0.2274341570

0.3411512355

0.4548683140

-0.1705756177

- ~tHJ. nUlL

o
o

X(to)= 0, A(to)=
I

o

Fig. 2 Trajectories from different starting points

The rather precise looking numbers above are due
to a normalization process for rough initial val­

ues.

The results shown in Figs. 3 and 5 are indeed

to the initial conditions. If we were able to solve a

two-point boundary-value problem for a chaotic

system, it wouldn't be chaos any more. Also we

do not try to integrate the problem backward in

time from a point satisfying the terminal transver­

sality condition, because an attractor forward in

time becomes a repeller backward in time unless

a trajectory starts exactly on the attractor. Back­

ward in time, the state variables diverge from the

attractor rapidly. Rather, we try a few different

initial starting points which merely satisfy!HUo)

=0. Such trajectories are plotted in Fig. 2.
Trajectories are plotted in (x" X2' t) space to

visualize behavior more clearly. In Fig. 2, we see

that trajectories seem to converge to two different

limit cycles, where the inner one has a positive

largest Lyapunov exponent while the other has a

negative largest Lyapunov exponent. A typical

result which has a positive largest Lyapunov

exponent is shown in Figs. 3, 4, and 5 with initial

conditions:

(35)

(36)

(33)
if 2: >0

if 2: <0

if 2:=0
{

Umax

u*= - U max

singular control

a!H
8u=Ax2=0.

u· = AO(~2{+( 1-3 xf)66+ ~16- o~l})

+A Xl X2

+AX2(+(XI-Xn-OX2+U(t»)

(
.0-2 / 2 I (I 3 2) e2 /+A,,, ~2-1;"16 r -2 - Xl c;16

r 2+ o6~11 r 2
)

+A';2( -6~Ur2++(l-3xf)(l

_~1/r2)6 -O~2(1- xU r 2
)), (34)

where

However nonexistence of a singular control for

this problem is discussed in detail in reference

(Lee, 1991).

Adams' variable-order, variable-step integra­

tion method (Shampine, 1975) is employed to

integrate (25) and (27), with the local error

controlled to less than 1x 10-9, from t = to to

arbitrary chosen t1 with an optimal control

computed by (33) and given initial values of X
Uo) and AUo). However, one component of AUo)
is computed so that (29) is satisfied at t = to'

We do not try to solve a two-point boundary­

value problem, i. e., a final transversality condi­
tion is not satisfied. The reason is, by definition of

chaos, that a chaotic system is extremely sensitive

Using (31) for the performance index, we set out

to determine an optimal control obtained by the
conditions in (28) and (29) subject to the con­

straint (32). Since u appears linearly in ,an opti­

mal control u * is bang-bang control, with the

possibility of a singular control, and is deter­

mined by
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250 :300 350 400200

.~ ...

:

Fig. 5 History of Lyapunov exponents

Fil~. 3 An optimal trajectory phase portrait

(37)

7. Jump Condition

U(x) = umaxsgn( m(x)),

with switching function

To discuss the necessary jump condition, let us
consider a control law which generates the limit
cycle in Fig. 3. The control corresponds to a

discontinuous feedback control of the form

Fig. 4 Optimal control u*(t)

differentiable right-hand sides and with a closed­
loop control, a jump discontinuity condition must

be imposed on the state perturbations in order to
compute correct Lyapunov exponents.

We compute the largest Lyapunov exponent for
Duffing system (20) with a control in (37) and

(38) using the method in (Wolf, 1985) and plot the

time history of it in Fig. 6. The feedback control
(37) and (38) yields the same value of the largest
Lyapunov exponent for a limit cycle as the opti­

mal control does. We see that the method in
(Wolf, 1985) for calculating Lyapunov expo­

nents is incorrect for differential equations with
discontinuous or nondifferentiable right-hand

sides. To use the method in (Wolf, 1985), one must
IDcorporate a jump discontinuity in the state
perturbations each time a trajectory crosses the

switching surface m(x) =0.

Given a control function u(xU» at xU) along
the trajectory, Eq. (I) is rewritten as

strangl~. Nearby trajectories are attracted to the
limit cycle and the largest Lyapunov exponent is
positive, indicating chaotic motion, and is about

twice as large as that obtainable with simple
sinusoidal forcing at the same amplitude. In
addition, the Lyapunov fractal dimension calcu­

lated by the conjecture in (Kaplan, 1979) has a
noninteger value of approximately 2.5, indicating
a fractal strange attractor. However, the "strange"

attractor, shown in Fig. 3, is not chaotic and in
fact, is nothing more than a limit cycle. ~his
paradoxical result contradicts the basic idea that
a bounded trajectory with at least one positive
Lyapunov exponent must be chaotic.

In the following section, it is provided that
details of this chaotic limit cycle paradox and the
resolution of the paradox. In particular, for sys­
tems of differential equations with only piecewise x(t)=g(x)~ f(x, u(x».

(38)

(39)
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7)-~ 7)( rc)
7)+ ~ 7)( rc + or),

Grantham and Lee (1993) deduced the following

condition at rc for or and sufficiently small 10:

5~--

OJi.-~----c----:c-~
~ 50 100 150. 200 250. 300

R -1
~

3' -.2

- 3

-4

350 400. 450 5~0
r,me ("f

at r=rc+C:.

Letting

f- ~ lim f(x( r), u( r»
T ~Tc

r < Tc

f+ ~ lim (x( r), U( r))
r-- Tc
r> rc

(40)

----------- - ---- (41 )

Fig. 6 The largest Lyapunov exponent for duffing
system with feedback control

Also, the perturbed state x at rc- or satisfies m
(x(rc-or))= 0. Applying the first-order

approximation theorem of Taylor, we have

(44)

(43)

Suppose there is a switching surface which

divides the state space in such a way that at the

surface the right hand side of (39) is discontinu­

ous. If the path, xU), generated by (39) passes

through the surface then there are jump changes

in the state perturbation variables at a point

where xU) crosses the surface (Grantham and

Lee, 1993).

Suppose that X is a domain in the state space

and is composed of partitions of Xi such that

xnXj =0, i=l=j
Xk~X k= 1,2, ... , K

and that an (n - I)-dimensional nonempty dis­

continuity manifold Mij~XinXj, i=l=j is pres­

presented by

m(x)=O

0= m( x( rc - or»)
= m(x( rc ) - (_or+ 107) +...)

) om(x)= m(x +-----ax(c:7)- - f-or+ ... )+ .,.

(42)

yielding

om
or ox 7)-

E om
fox -

From (41), we have the following necessary con­

dition for the state perturbation variables at x( rc)

Eqs. (43) and (44) constitute a jump condition

that should be applied to the state perturbations

-5'------

Fig. 7 Lyapunov exponents for duffing system with
the jump condition

100 1~-200 250. 300 350 400 450. 590

_____',.·'1-4

-.3

in such a way that m is continuous and continu­

ously differentiable on a domain containing Mij
and the function u( • ) is defined on each Xk'

N ow consider a trajectory which crosses Mij at

point xc~x(rc)' It is assumed that the trajectory
is continuous and that velocity vectors are not

tangent to the manifold. Also it is assumed that

there exists an 10 >°such that

x( r) EO: Xi V rEO: (rc- 10, rJ

x(r)EO:Xj VrEO:(rc, rc+C:)

om(xc)
ox • f(xc, uJ=I=O,

Ui~U(') at r=rc-c:

om(xJ • f( ) ° D. ( )oX XC' Uj =1= , Uj= U •
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,~----~--_c."C---cc.--------~

.5 1.

Another Limt! Cye!e

The Limt! Cye!

o···~~

-5 -'1\ \15 -1 -5
\<1 \ ~

~~
~~-=---

Fig. 8 Diverging nearby trajectory about the chaotic
limit cycle

when the trajectory crosses the switching surface

m(x)=O.

Now consider the Duffing system (20) with the

synthesized state feedback control (37) and (38)

with the constraint (32). For the system,

Lyapunov exponents are computed and plotted in

Fig. 7 using the method in (Wolf, 1985) with the

jump condition (43) and (44) implemented when

the trajectory crosses the switching surface

defined by (38). Lyapunov exponents have the

correct value for a limit cycle (the largest

Lyapunov exponent is zero). The state portrait is

not plotted since the Duffing system (20) with a

state feedback control (37) and (38) with con­

straint (32) produces the same limit cycle as in

Fig. 3.

8. Open-Loop Optimal Control
Problem Solved

5~- - - ~------------
I

,I
i

The optimal open-loop control indeed yielded

the large Lyapunov exponent, given the control

constraints. But the resulting trajectory was a

limit cycle. In other words, the optimal control

yield<~d a trajectory which has a positive largest

Lyapunov exponent and the trajectory was not an

strange attractor. The trajectory is chaotic in the

sense that nearby trajectories are attracted to it

and the trajectory remains in a bounded region

with the positive Lyapunov exponent, but the

trajectory is not strange in the sense that it is not

a space-filling attractor.

The limit cycle was an attractor in the optimal

control setting. The optimal control, u *(t) drove

nearby trajectories to the limit cycle. However,

when we use the same control to the perturbed

trajectory, the perturbed trajectory is not attracted

to the limit cycle. Rather, it diverges from the

limit cycle. It implies that even if the optimal

control is considered as a open-loop control, i. e.,

a function of time, it act like a closed-loop control

which is function of either the state variables or

the adjoint variables.

To test the stability, we applied the optimal

control as a forcing function to Duffing's equa­

tion with an infinitesimally perturbed initial

point (perturbed from the initial point which was

Fig. 9 The first Lyapunov exponent of a perturbed
trajectory

used in the optimal control problem). The pertur­

bed trajectory soon diverged from the limit cycle

shown in Fig. 3, then converged to another limit

cycle having a zero largest Lyapunov exponent

computed by the method in (Wolf, 1985). A phase

portrait of the perturbed trajectory and the first

Lyapunov exponent history are shown in Figs. 8

and 9, respectively. In Fig. 9, we can notice that a

sharp transition in the value of Lyapunov expo­

nent when the perturbed trajectory breaks out of

the unstable limit cycle at about t =,130 seconds.

9. Closed-Loop Optimal Control Jump
Condition in an Augmented Space

In previous sections, we presented nonlinear
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u*=argmaxm(AU), X*(t), u). (45)
u

With closed -loop control u(x, ).)in mind, we

can convert Eqs. (25)-(29) into a problem in the

augmented space given by

dynamical systems subject to a Lyapunov expo­

nent maximizing control based on the state pertur­

bations leading to a paradoxical result. The per­

formance index in (13) makes the controller

believe it is the most chaotic response that can be

achieved, but the optimal control drives trajec­

tories into just an unstable limit cycle. We need to

implement a jump discontinuity condition on a

perturbation vector for correct Lyapunov expo­

nent computation. In this chapter, we treat an

optimal control u * as a closed-loop control, not

in the state space, but in the augmented (x, )..)

space. For example, in Duffing's equation, u* is

a bang-bang control whose switching function is

;lx,. 1n this case u * is a function of one of the

adjoint variables. Bang-bang control occurs, for

example, if u appears linearly in the function and

the performance integrand is explicitly indepen­

dent of u. We can find many problems which fall

in this category.

An optimal control u * satisfying condition

(28) can be rewritten as

which yields the correct Lyapunov exponent. In

the following section, we will consider a system

which has a known optimal cost-to-go function so

that the initial perturbation vector is well defined.

(51 )

LIxo 0

LIxo ~

LIXof;;
LI~o 0 (53)
LI;lo 0

LI).xo LI).xo
LI)..o 0

C(x+LIx)=O

Applying a jump condition, we obtain

aM
-a-' LIx-

LIx+=LIx-+(F+-F-) a~ (52)

ax· F -

which should be applied when u switches across

the switching surface (48), with an initial value of

LIx:
Note that the choice of initial LIX is not totally

arbitrary since not only the closed-loop control

problem (47) - (50) is dependent on the optimal

problem in (14) but also the perturbed point

should satisfy (51). However, we still have free­

dom left for choosing the initial LIx

d(LIX) =( aF + aF aU)LI (50)
dt ax au ax x

and satisfying the initial condition (49) at the

perturbed point, so that

(46)X=F[X' u(X)]

with a closed-loop control

(47)u(x) = argmaxm(X, u)
u

subject to a control constraint Iu Is; Umax, with a

switching surface

10. An Example having Known
Optimal Cost Return Function

where
(54)

(55)

X lU) =xi t)

X2(t)= u(t),

with the control constrained by

Consider a system, developed in (Leitmann,

1981), having a unit mass in rectilinear motion

subject to a force, given by

(49)

(48)

across which control u is discontinuous and an

initial constraint, such as m( • ) =0, of the form

To compute a Lyapunov exponent for (46) with a

closed-loop control (47) and the initial condition

(49), let us consider a perturbation vector, LIx,
with a governing ditferential equation given by

The objective of the problem is to transfer the

state from a given initial point, xo, to the origin in

minimum time. Thus we have /0= I.

To utilize the maximum principle, we have the
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The switching function };~ aH/au is given by

)'1 (t) = Al(tf)
,12(t) =A2(tf) + AI(tf)( tf - fl. (58)

Letting ('1~AI(tf) and ('2~AI(tf)tf+AAtf) we
have

function H defined by

HU., x, u)=,1o+,1IX2+AzU

with ,~o= I and the adjoint equations

AI(t)=o

AAfl=~,1I(t).

Thus we obtain

H[A(t), x(t), u]
=',10 + ('IXZ( t )+(('2 ~ ('I t )U·

(56)

(57)

(59)

}; ( t ) = AZ( t) = ('2 - CI t (60) Fig. 10 Time optimal trajectories

where CI and C2 both cannot be zero, implying
that the extremal control, u(' lis bang-bang

control with at most one switch.
From the development in (Leitmann, 1981) of

the synthesized optimal control, we have u *
defined by

{

-I

u*= I
which lets us determine the value of the initial
perturbation vector Llx. For the example problem,

Using the optimal control law in (61) for (54),

optimal trajectories are plotted in Fig. 10. Also,

the optimal cost return function defined by

(63)

(62)1',
V*(Xo)~ .fodt

'0
has the property that

aV*(X*(t)
ax(61 )

o if XI=X2=0

if (X2 >0 and 2x1+x? :20)

or 2x1-X?>O

if (X2<0 and 2x1+x?:s:O)

or 2xI+x?<0

I
for XI> -2x2Ix21,

x2+j4xI +2x?

v*(X)={ -x2+F~4xI+~X? for XI< -+x2Ix21,
IX21 I

for XI= -2x2Ix21·

(64)

To determine initial perturbations, LlAx in (53),
we use the variational equation of (63) as fol­

lows:

a2 v*LlAx= ,,-z-L}x (65)
oX

to the first order.
We applied the necessary condition (52) to the

example problem knowing the switching function

(60) and the optimal cost return function. To do
so, we: chose an arbitrary initial point in the state

space and corresponding adjoint variables were
determined using (63). Then, for arbitrary small

state perturbation vector e in (53), the perturba­
tion in the adjoint vector LlAx was determined
according to (65). With given initial values, the

governing differential equations were integrated
with the control sequences given by (61) and the
jump condition (52) was applied at the switching

time. The plots for reference and perturbation
trajectories with the jump condition implemented

are shown in Fig. II. In the figure, at switching
time, we see that the perturbed trajectory was
corrected by the jump condition with a negligible

error as though the closed-loop control law (61)



has been applied to the perturbed trajectory.

-1.0 L--L_L--'--_L--'--_L--L_L--L-----l

-.5 -.4 -.3 -.2 0.0 0.0 .1 .2 .3 .4 .5

XI

Fig. 11 Reference and perturbed trajectories with
jump condition implemented
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paradoxical result that an attractor having a

positive largest Lyapunov exponent was not a
chaotic strange attractor. Indeed, the resulting
phase portrait of the optimal trajectory was a
limit cycle. The conclusion is that even if the

optimal control is considered as an open-loop
control, i.e., a function of time, it acts like a
closed-loop control, i.e., a function of the state
and the adjoint variables. For an optimal control

as a closed-loop control we need to implement a
jump discontinuity condition on a perturbation
vector for correct Lyapunov exponent computa­

tion. This will eventually resolve the chaotic limit

cycle paradox.
For the present, however, we have only demon­

strated the optimal closed-loop jump condition
for a system in which the optimal return function
was known, so that we could directly calculate

initial adjoint perturbations as function of initial

state perturbations.

11. Summary

An optimal control problem has been formulat­
ed to determine the most chaotic response achiev­

able for dynamical systems by manipulating the
largest Lyapunov exponent as a chaos measure­

ment. However, the application of current opti­
mal control theory for maximizing the largest

Lyapunov exponent presents difficulties. The
difficulties are exponential growth of the norm of

the state perturbation vector and the norm of the
adjoint variables. A common approach for avoid­
ing this computational problem is periodic renor­
malization. However, periodic renormalization

raises a discontinuity problem which is not a
standard case in optimal control theory. To cir­

cumvent the exponential growth in magnitude
and the discontinuity problem, we employ a
method of continuous normalization which
replaces periodic discontinuous renormalization
with differential equations that correspond to

continuous normalization at each instant of time.
Next, an optimal control problem was for­

mulated and applied to the Duffing's equation to

maximize the largest Lyapunov exponent. The
resulting open-loop optimal controller yielded a
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